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ABSTRACT 

Fractional-order differential equations have attracted significant attention in recent years due to their ability 

to model memory and hereditary properties inherent in many physical, biological, and engineering systems. In 

comparison with classical integer-order models, fractional differential equations provide a more accurate and 

flexible framework for describing complex nonlinear phenomena. However, the presence of nonlinearity and 

fractional derivatives poses substantial analytical challenges, particularly with respect to the existence and 

uniqueness of solutions. 

This paper investigates the existence and uniqueness of solutions for a class of nonlinear fractional-order 

differential equations under suitable conditions. The analysis is carried out in an appropriate Banach space 

setting, where the fractional differential equation is first transformed into an equivalent integral equation. 

Fixed point techniques play a central role in establishing the main results. Specifically, Banach’s contraction 

principle and Schauder’s fixed point theorem are employed to derive sufficient conditions for the existence and 

uniqueness of solutions. 

The results obtained in this study extend several known results in the literature by relaxing restrictive 

assumptions on the nonlinear term and the order of the fractional derivative. The theoretical findings provide 

a unified framework for analyzing nonlinear fractional-order systems and contribute to the mathematical 

foundations of fractional calculus. Furthermore, an illustrative example is presented to demonstrate the 

applicability of the developed theoretical results. 

The outcomes of this research are expected to be useful for further theoretical investigations as well as for 

applications involving fractional-order models in science and engineering. 

Keywords: Fractional-order differential equations; Nonlinear systems; Fixed point theorems. 

1. INTRODUCTION 

Fractional calculus has emerged as a powerful mathematical tool for modeling complex phenomena that cannot 

be adequately described using classical integer-order differential equations. Unlike integer-order derivatives, 

fractional derivatives incorporate memory and hereditary effects, making them particularly suitable for describing 

processes with long-range temporal dependence. As a result, fractional-order differential equations have found 

extensive applications in diverse fields such as viscoelasticity, anomalous diffusion, control theory, signal 

processing, population dynamics, and biological systems. 

In recent years, increasing attention has been devoted to nonlinear fractional-order differential equations, as 

nonlinearity plays a crucial role in accurately representing real-world systems. However, the inclusion of both 

nonlinearity and fractional derivatives significantly complicates the mathematical analysis. One of the 

fundamental questions in the theory of fractional differential equations concerns the existence and uniqueness of 

solutions, since these properties ensure the well-posedness of the underlying mathematical model. 

The study of existence and uniqueness for fractional differential equations differs substantially from the classical 

integer-order case. In the fractional setting, the nonlocal nature of fractional derivatives introduces additional 

analytical challenges. Standard techniques used for ordinary differential equations often fail or require substantial 

modification. Consequently, alternative approaches grounded in functional analysis have become indispensable 

for investigating such problems. 

Among the most effective analytical tools for establishing existence and uniqueness results are fixed point 

theorems. Fixed point theory provides a robust framework for analyzing nonlinear problems by transforming 

differential equations into equivalent integral equations. This approach allows the use of powerful results from 

functional analysis, particularly in Banach and metric spaces, to derive sufficient conditions for solvability. 

The Banach contraction principle is one of the most widely used fixed point results for proving uniqueness of 

solutions. It ensures the existence of a unique fixed point under a contraction condition, making it especially 

suitable for nonlinear fractional equations with Lipschitz-type nonlinearities. On the other hand, Schauder’s fixed 

point theorem is frequently employed to establish existence results when compactness conditions are satisfied, 

even in the absence of strict contraction properties. Together, these theorems form a comprehensive analytical 

framework for addressing solvability issues in nonlinear fractional-order systems. 



International Organization of Research & Development (IORD) 

ISSN: 2348-0831 

Vol 12 Issue 02 | 2025 

120215 DOI: 10.5281/zenodo.18107882 96 

Several researchers have investigated existence and uniqueness problems for fractional differential equations 

using fixed point techniques. Many existing works focus on specific types of fractional derivatives, such as the 

Caputo or Riemann–Liouville derivatives, and impose restrictive assumptions on the nonlinear terms. While these 

studies have contributed significantly to the development of the theory, there remains a need for more generalized 

results that relax these assumptions and provide a unified approach applicable to a broader class of nonlinear 

fractional-order differential equations. 

Moreover, much of the existing literature addresses either existence or uniqueness separately, whereas a combined 

treatment using multiple fixed-point techniques can offer deeper insights into the structure of solutions. 

Establishing both existence and uniqueness within a single analytical framework enhances the theoretical 

robustness of the results and improves their applicability to real-world models. 

Motivated by these considerations, the present paper investigates the existence and uniqueness of solutions for a 

class of nonlinear fractional-order differential equations by employing fixed point theorems. The analysis is 

carried out in an appropriate Banach space, where the fractional differential equation is first converted into an 

equivalent integral equation. This transformation plays a key role in enabling the application of fixed-point results. 

The main contributions of this work can be summarized as follows. First, sufficient conditions for the existence 

and uniqueness of solutions are established using Banach’s contraction principle. These conditions guarantee not 

only the solvability of the problem but also the continuous dependence of solutions on initial data. Second, 

existence results are obtained using Schauder’s fixed point theorem under more general assumptions on the 

nonlinear term. This dual approach allows for a flexible and comprehensive treatment of nonlinear fractional-

order differential equations. 

The theoretical results presented in this paper extend and generalize several known results in the literature. By 

weakening restrictive conditions and employing a systematic functional analytic framework, this study contributes 

to the mathematical foundations of fractional differential equations. Furthermore, the results provide a solid 

theoretical basis for future research on stability analysis, numerical approximation, and applications of nonlinear 

fractional-order systems. 

2. PRELIMINARIES 

In this section, we recall some fundamental concepts and definitions from fractional calculus and fixed-point 

theory that are essential for the analysis carried out in this paper. These preliminaries provide the mathematical 

framework within which the existence and uniqueness results for nonlinear fractional-order differential equations 

are established. 

2.1 Fractional Calculus 

Fractional calculus is a generalization of classical calculus that deals with derivatives and integrals of non-integer 

order. Among various definitions of fractional derivatives available in the literature, the Riemann–Liouville and 

Caputo fractional derivatives are the most commonly used. In this work, we primarily consider the Caputo 

fractional derivative due to its suitability for problems involving initial conditions of integer order. 

Definition 2.1 (Riemann–Liouville Fractional Integral) 

Let 𝛼 > 0and let 𝑓be a locally integrable function on the interval [0, 𝑇]. The Riemann–Liouville fractional integral 

of order 𝛼is defined as 

(𝐼𝛼𝑓)(𝑡) =
1

Γ(𝛼)
∫ (𝑡 − 𝑠

𝑡

0

)𝛼−1𝑓(𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇], 

where Γ(⋅)denotes the Gamma function. 

Definition 2.2 (Caputo Fractional Derivative) 

Let 𝑛 − 1 < 𝛼 < 𝑛, where 𝑛 ∈ ℕ, and let 𝑓 ∈ 𝐶𝑛([0, 𝑇]). The Caputo fractional derivative of order 𝛼is defined 

by 

(𝐷𝐶
𝛼𝑓)(𝑡) =

1

Γ(𝑛 − 𝛼)
∫ (𝑡 − 𝑠

𝑡

0

)𝑛−𝛼−1𝑓(𝑛)(𝑠) 𝑑𝑠. 

The Caputo derivative is particularly useful in applied problems because it allows the formulation of initial 

conditions in terms of classical integer-order derivatives, making it more consistent with physical interpretations. 

2.2 Fractional Differential Equations 

Consider a nonlinear fractional-order differential equation of the form 

𝐷𝐶
𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)), 𝑡 ∈ [0, 𝑇],0 < 𝛼 < 1, 

subject to the initial condition 

𝑥(0) = 𝑥0. 
Using properties of the Caputo derivative, the above problem can be transformed into an equivalent integral 

equation: 
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𝑥(𝑡) = 𝑥0 +
1

Γ(𝛼)
∫ (𝑡 − 𝑠

𝑡

0

)𝛼−1𝑓(𝑠, 𝑥(𝑠)) 𝑑𝑠. 

This integral formulation plays a crucial role in the application of fixed point theorems, as it allows the problem 

to be expressed in an operator-theoretic framework. 

2.3 Function Spaces 

Let 𝐶([0, 𝑇], ℝ)denote the space of all continuous real-valued functions defined on [0, 𝑇]. This space, equipped 

with the supremum norm 

∥ 𝑥 ∥∞= sup⁡
𝑡∈[0,𝑇]

∣ 𝑥(𝑡) ∣, 

forms a Banach space. 

Throughout this paper, solutions of the fractional differential equation are sought in this Banach space. The 

completeness of 𝐶([0, 𝑇], ℝ)ensures the applicability of fixed-point results. 

2.4 Fixed Point Theory 

Fixed point theory provides powerful tools for analyzing nonlinear equations by studying points that remain 

invariant under a given mapping. 

Definition 2.3 (Fixed Point) 

Let 𝑋be a nonempty set and let 𝑇: 𝑋 → 𝑋be a mapping. A point 𝑥 ∈ 𝑋is called a fixed point of 𝑇if 

𝑇(𝑥) = 𝑥. 
 

Theorem 2.1 (Banach Contraction Principle) 

Let (𝑋, 𝑑)be a complete metric space and let 𝑇:𝑋 → 𝑋be a contraction mapping, i.e., there exists a constant 0 <
𝑘 < 1such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘 𝑑(𝑥, 𝑦)for all 𝑥, 𝑦 ∈ 𝑋. 
Then 𝑇has a unique fixed point in 𝑋. 

The Banach contraction principle is particularly useful for proving existence and uniqueness results, as the 

contraction condition guarantees both properties simultaneously. 

Theorem 2.2 (Schauder Fixed Point Theorem) 

Let 𝑋be a Banach space and let 𝐾 ⊂ 𝑋be a nonempty, closed, bounded, and convex set. If 𝑇: 𝐾 → 𝐾is a continuous 

and compact operator, then 𝑇has at least one fixed point in 𝐾.  

Schauder’s theorem is commonly used when contraction conditions are not satisfied but compactness properties 

can be established. Unlike Banach’s principle, Schauder’s theorem guarantees existence but not uniqueness. 

2.5 Operator Formulation 

Define an operator 𝒯: 𝐶([0, 𝑇], ℝ) → 𝐶([0, 𝑇], ℝ)by 

(𝒯𝑥)(𝑡) = 𝑥0 +
1

Γ(𝛼)
∫ (𝑡 − 𝑠

𝑡

0

)𝛼−1𝑓(𝑠, 𝑥(𝑠)) 𝑑𝑠. 

The problem of finding a solution to the fractional differential equation is equivalent to finding a fixed point of 

the operator 𝒯. This equivalence allows the use of fixed-point theorems to establish existence and uniqueness 

results. 

3. MAIN RESULTS 

In this section, we establish the main existence and uniqueness results for nonlinear fractional-order differential 

equations using fixed point techniques. The analysis is carried out in an appropriate Banach space framework, 

and the results are derived under suitable assumptions on the nonlinear function. 

We consider the nonlinear fractional-order initial value problem 

𝐷𝐶
𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)), 𝑡 ∈ [0, 𝑇],0 < 𝛼 < 1, 

with the initial condition 

𝑥(0) = 𝑥0, 
where 𝑓: [0, 𝑇] × ℝ → ℝis a given continuous function. 

As shown in Section 2, this problem is equivalent to the integral equation 

𝑥(𝑡) = 𝑥0 +
1

Γ(𝛼)
∫ (𝑡 − 𝑠

𝑡

0

)𝛼−1𝑓(𝑠, 𝑥(𝑠)) 𝑑𝑠. 

The main objective is to prove the existence and uniqueness of solutions of this integral equation by applying 

fixed point theorems. 

3.1 Assumptions 

To establish the main results, we impose the following standard assumptions on the nonlinear function 𝑓: 

(A1) The function 𝑓(𝑡, 𝑥)is continuous on [0, 𝑇] × ℝ. 
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(A2) There exists a constant 𝐿 > 0such that 

∣ 𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦) ∣≤ 𝐿 ∣ 𝑥 − 𝑦 ∣ for all 𝑡 ∈ [0, 𝑇],  𝑥, 𝑦 ∈ ℝ. 
That is, 𝑓satisfies a Lipschitz condition with respect to the second variable. 

(A3) There exists a constant 𝑀 > 0such that 

∣ 𝑓(𝑡, 𝑥) ∣≤ 𝑀for all 𝑡 ∈ [0, 𝑇],  𝑥 ∈ ℝ. 
These assumptions are commonly used in the theory of fractional differential equations and ensure the 

applicability of fixed-point methods. 

3.2 Existence and Uniqueness via Banach Contraction Principle 

We first establish an existence and uniqueness result using Banach’s contraction principle. 

Theorem 3.1 (Existence and Uniqueness) 

Assume that conditions (A1) and (A2) hold. If 
𝐿𝑇𝛼

Γ(𝛼 + 1)
< 1, 

then the nonlinear fractional-order initial value problem admits a unique solution in the Banach space 𝐶([0, 𝑇], ℝ). 
Proof (Outline). 

Define the operator 𝒯on 𝐶([0, 𝑇], ℝ)by 

(𝒯𝑥)(𝑡) = 𝑥0 +
1

Γ(𝛼)
∫ (𝑡 − 𝑠

𝑡

0

)𝛼−1𝑓(𝑠, 𝑥(𝑠)) 𝑑𝑠. 

Using assumption (A2) and standard estimates, one can show that 

∥ 𝒯𝑥 − 𝒯𝑦 ∥∞≤
𝐿𝑇𝛼

Γ(𝛼 + 1)
∥ 𝑥 − 𝑦 ∥∞. 

Hence, 𝒯is a contraction mapping. By Banach’s contraction principle, 𝒯has a unique fixed point in 𝐶([0, 𝑇], ℝ), 
which corresponds to the unique solution of the problem. ∎ 

3.3 Existence Result via Schauder Fixed Point Theorem 

Next, we establish an existence result under weaker conditions using Schauder’s fixed point theorem. 

Theorem 3.2 (Existence of Solutions) 

Assume that conditions (A1) and (A3) hold. Then the nonlinear fractional-order initial value problem has at least 

one solution in 𝐶([0, 𝑇], ℝ). 
Proof (Outline). 

Let 

𝐵𝑅 = {𝑥 ∈ 𝐶([0, 𝑇], ℝ): ∥ 𝑥 ∥∞≤ 𝑅}, 
where 𝑅 > 0is chosen suitably large. Under assumption (A3), it can be shown that the operator 𝒯maps 𝐵𝑅into 

itself. Furthermore, 𝒯is continuous and compact due to the properties of the fractional integral operator. Hence, 

by Schauder’s fixed point theorem, 𝒯has at least one fixed point in 𝐵𝑅 , which corresponds to a solution of the 

problem.  

3.4 Discussion of Results 

The above results demonstrate that fixed point techniques provide a unified and effective approach for analyzing 

nonlinear fractional-order differential equations. Theorem 3.1 guarantees both existence and uniqueness under a 

Lipschitz condition, while Theorem 3.2 ensures existence under more general boundedness assumptions. 

These results extend several classical existence and uniqueness theorems from ordinary differential equations to 

the fractional-order setting. Moreover, they highlight the role of fractional order 𝛼and the time interval 𝑇in 

determining the solvability of the problem. 

4. PROOFS OF THE MAIN RESULTS 

This section provides detailed proofs of the existence and uniqueness results stated in Section 3. The proofs rely 

on fundamental properties of fractional integrals, Banach space techniques, and fixed point theorems. 

4.1 Proof of Theorem 3.1 (Existence and Uniqueness) 

We consider the nonlinear fractional-order initial value problem 

𝐷𝐶
𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)), 𝑡 ∈ [0, 𝑇],0 < 𝛼 < 1, 

with initial condition 𝑥(0) = 𝑥0. 

As shown earlier, this problem is equivalent to the integral equation 

𝑥(𝑡) = 𝑥0 +
1

Γ(𝛼)
∫ (𝑡 − 𝑠

𝑡

0

)𝛼−1𝑓(𝑠, 𝑥(𝑠)) 𝑑𝑠. 

Define the operator 𝒯: 𝐶([0, 𝑇], ℝ) → 𝐶([0, 𝑇], ℝ)by 
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(𝒯𝑥)(𝑡) = 𝑥0 +
1

Γ(𝛼)
∫ (𝑡 − 𝑠

𝑡

0

)𝛼−1𝑓(𝑠, 𝑥(𝑠)) 𝑑𝑠. 

We aim to show that 𝒯is a contraction mapping under the assumptions of Theorem 3.1. 

Let 𝑥, 𝑦 ∈ 𝐶([0, 𝑇], ℝ). Then, for each 𝑡 ∈ [0, 𝑇], 

∣ (𝒯𝑥)(𝑡) − (𝒯𝑦)(𝑡) ∣=∣
1

Γ(𝛼)
∫ (𝑡 − 𝑠

𝑡

0

)𝛼−1[𝑓(𝑠, 𝑥(𝑠)) − 𝑓(𝑠, 𝑦(𝑠))] 𝑑𝑠 ∣. 

Using the Lipschitz condition (A2), we obtain 

∣ 𝑓(𝑠, 𝑥(𝑠)) − 𝑓(𝑠, 𝑦(𝑠)) ∣≤ 𝐿 ∣ 𝑥(𝑠) − 𝑦(𝑠) ∣. 
Hence, 

∣ (𝒯𝑥)(𝑡) − (𝒯𝑦)(𝑡) ∣≤
𝐿

Γ(𝛼)
∫ (𝑡 − 𝑠

𝑡

0

)𝛼−1 ∣ 𝑥(𝑠) − 𝑦(𝑠) ∣  𝑑𝑠. 

Taking the supremum over 𝑡 ∈ [0, 𝑇]and using the definition of the supremum norm, we have 

∥ 𝒯𝑥 − 𝒯𝑦 ∥∞≤
𝐿

Γ(𝛼)
∥ 𝑥 − 𝑦 ∥∞ ∫ (𝑇 − 𝑠

𝑇

0

)𝛼−1𝑑𝑠. 

Since 

∫ (𝑇 − 𝑠
𝑇

0

)𝛼−1𝑑𝑠 =
𝑇𝛼

𝛼
=

𝑇𝛼

Γ(𝛼 + 1)
Γ(𝛼), 

it follows that 

∥ 𝒯𝑥 − 𝒯𝑦 ∥∞≤
𝐿𝑇𝛼

Γ(𝛼 + 1)
∥ 𝑥 − 𝑦 ∥∞. 

By the assumption 
𝐿𝑇𝛼

Γ(𝛼 + 1)
< 1, 

the operator 𝒯is a contraction mapping on the Banach space 𝐶([0, 𝑇], ℝ). Therefore, by Banach’s contraction 

principle, 𝒯admits a unique fixed point 𝑥∗ ∈ 𝐶([0, 𝑇], ℝ). 
This fixed point satisfies 𝒯𝑥∗ = 𝑥∗, which implies that 𝑥∗is the unique solution of the original nonlinear fractional-

order differential equation. This completes the proof of Theorem 3.1.  

4.2 Proof of Theorem 3.2 (Existence of Solutions) 

We now prove the existence of solutions using Schauder’s fixed point theorem under assumptions (A1) and (A3). 

Let 

𝐵𝑅 = {𝑥 ∈ 𝐶([0, 𝑇], ℝ): ∥ 𝑥 ∥∞≤ 𝑅}, 
where 𝑅 > 0is a positive constant to be determined. 

Step 1: 𝓣(𝑩𝑹) ⊂ 𝑩𝑹 

For any 𝑥 ∈ 𝐵𝑅and 𝑡 ∈ [0, 𝑇], 

∣ (𝒯𝑥)(𝑡) ∣≤∣ 𝑥0 ∣ +
1

Γ(𝛼)
∫ (𝑡 − 𝑠

𝑡

0

)𝛼−1 ∣ 𝑓(𝑠, 𝑥(𝑠)) ∣  𝑑𝑠. 

Using assumption (A3), we have ∣ 𝑓(𝑠, 𝑥(𝑠)) ∣≤ 𝑀. Thus, 

∣ (𝒯𝑥)(𝑡) ∣≤∣ 𝑥0 ∣ +
𝑀

Γ(𝛼)
∫ (𝑇 − 𝑠

𝑇

0

)𝛼−1𝑑𝑠 =∣ 𝑥0 ∣ +
𝑀𝑇𝛼

Γ(𝛼 + 1)
. 

Choose 

𝑅 ≥∣ 𝑥0 ∣ +
𝑀𝑇𝛼

Γ(𝛼 + 1)
. 

Then ∥ 𝒯𝑥 ∥∞≤ 𝑅, implying that 𝒯(𝐵𝑅) ⊂ 𝐵𝑅. 

Step 2: Continuity of 𝓣 

Let 𝑥𝑛 → 𝑥in 𝐶([0, 𝑇], ℝ). Since 𝑓is continuous and bounded, the dominated convergence theorem implies that 

𝒯𝑥𝑛(𝑡) → 𝒯𝑥(𝑡) 
uniformly on [0, 𝑇]. Hence, 𝒯is continuous. 

Step 3: Compactness of 𝓣 

The operator 𝒯maps bounded sets into equicontinuous and uniformly bounded sets due to the smoothing property 

of the fractional integral. By the Arzelà–Ascoli theorem, 𝒯is compact. 

Since 𝐵𝑅is nonempty, closed, bounded, and convex, and 𝒯is continuous and compact with 𝒯(𝐵𝑅) ⊂ 𝐵𝑅, 

Schauder’s fixed point theorem guarantees the existence of at least one fixed point of 𝒯in 𝐵𝑅 . 

Thus, the nonlinear fractional-order differential equation admits at least one solution in 𝐶([0, 𝑇], ℝ). 
This completes the proof of Theorem 3.2.  
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5. ILLUSTRATIVE EXAMPLE 

In this section, we present an illustrative example to demonstrate the applicability of the existence and uniqueness 

results established in the previous sections. The example verifies the assumptions of Theorems 3.1 and 3.2 and 

confirms the effectiveness of the fixed-point approach for nonlinear fractional-order differential equations. 

Example 5.1 

Consider the nonlinear fractional-order initial value problem 

𝐷𝐶
𝛼𝑥(𝑡) = 𝜆sin⁡(𝑥(𝑡)), 𝑡 ∈ [0, 𝑇],0 < 𝛼 < 1, 

subject to the initial condition 

𝑥(0) = 𝑥0, 
where 𝜆 > 0is a real constant. 

Verification of Assumptions 

We define the nonlinear function 

𝑓(𝑡, 𝑥) = 𝜆sin⁡(𝑥). 
Continuity 

The function 𝑓(𝑡, 𝑥)is continuous with respect to both variables on [0, 𝑇] × ℝ, since the sine function is 

continuous on ℝ. Hence, assumption (A1) is satisfied. 

Lipschitz Condition 

For any 𝑥, 𝑦 ∈ ℝ, 

∣ 𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦) ∣= 𝜆 ∣ sin⁡(𝑥) − sin⁡(𝑦) ∣≤ 𝜆 ∣ 𝑥 − 𝑦 ∣. 
Thus, 𝑓satisfies a Lipschitz condition with Lipschitz constant 𝐿 = 𝜆. Therefore, assumption (A2) holds. 

Boundedness 

Since ∣ sin⁡(𝑥) ∣≤ 1for all 𝑥 ∈ ℝ, we have 

∣ 𝑓(𝑡, 𝑥) ∣= 𝜆 ∣ sin⁡(𝑥) ∣≤ 𝜆. 
Hence, assumption (A3) is satisfied with 𝑀 = 𝜆. 

Existence and Uniqueness Result 

From Theorem 3.1, the problem admits a unique solution in 𝐶([0, 𝑇], ℝ)provided that 
𝜆𝑇𝛼

Γ(𝛼 + 1)
< 1. 

This condition establishes a clear relationship between the fractional order 𝛼, the time interval 𝑇, and the 

parameter 𝜆. When this inequality holds, the operator associated with the integral formulation of the problem 

becomes a contraction, ensuring uniqueness. 

Integral Formulation 

The equivalent integral equation corresponding to the given fractional differential equation is 

𝑥(𝑡) = 𝑥0 +
𝜆

Γ(𝛼)
∫ (𝑡 − 𝑠

𝑡

0

)𝛼−1sin⁡(𝑥(𝑠)) 𝑑𝑠. 

Define the operator 𝒯: 𝐶([0, 𝑇], ℝ) → 𝐶([0, 𝑇], ℝ)by 

(𝒯𝑥)(𝑡) = 𝑥0 +
𝜆

Γ(𝛼)
∫ (𝑡 − 𝑠

𝑡

0

)𝛼−1sin⁡(𝑥(𝑠)) 𝑑𝑠. 

As shown earlier, this operator satisfies all the conditions of Banach’s contraction principle under the stated 

inequality. Hence, the fixed point of 𝒯corresponds to the unique solution of the problem. 

Discussion 

This example illustrates how the abstract existence and uniqueness results can be applied to a concrete nonlinear 

fractional-order differential equation. The choice of a trigonometric nonlinearity highlights the flexibility of the 

theoretical framework, as the results remain valid even for nonlinearities that are not polynomial in nature. 

Moreover, the condition 
𝜆𝑇𝛼

Γ(𝛼 + 1)
< 1 

clearly demonstrates the influence of the fractional order and the length of the time interval on the solvability of 

the problem. Smaller values of 𝛼or 𝑇increase the likelihood of satisfying the contraction condition, reflecting the 

inherent nonlocal effects of fractional derivatives. 
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6. CONCLUSION 

In this paper, we have investigated the existence and uniqueness of solutions for a class of nonlinear fractional-

order differential equations using fixed point techniques. Fractional-order models, due to their inherent nonlocality 

and memory effects, provide a more realistic mathematical framework for describing complex phenomena than 

classical integer-order differential equations. However, this same nonlocal nature introduces significant analytical 

challenges, particularly in establishing the well-posedness of the corresponding initial value problems. 

By transforming the nonlinear fractional differential equation into an equivalent integral equation, we formulated 

the problem within an operator-theoretic framework in a suitable Banach space. This approach enabled the 

effective application of fixed-point theorems from functional analysis. Two complementary fixed-point 

techniques were employed in this study. The Banach contraction principle was used to establish sufficient 

conditions for both existence and uniqueness of solutions, while Schauder’s fixed point theorem was applied to 

guarantee existence under weaker assumptions. 

The main results demonstrate that if the nonlinear term satisfies a Lipschitz condition with respect to the unknown 

function and an appropriate contraction condition involving the fractional order and the time interval holds, then 

the fractional-order problem admits a unique solution. On the other hand, even in the absence of a Lipschitz 

condition, the existence of at least one solution can be ensured under suitable boundedness and continuity 

assumptions. These results highlight the versatility of fixed-point methods in handling nonlinear fractional-order 

differential equations. 

An illustrative example involving a nonlinear trigonometric term was presented to validate the theoretical 

findings. The example clearly shows how the abstract assumptions can be verified in practice and how the 

fractional order and model parameters influence the solvability conditions. This reinforces the applicability of the 

theoretical framework to a wide range of nonlinear fractional-order models. 

The contributions of this work are twofold. From a theoretical perspective, the results extend classical existence 

and uniqueness theorems from ordinary differential equations to the fractional-order setting and provide a unified 

analytical framework for nonlinear problems. From an applied perspective, the findings offer a solid mathematical 

foundation for fractional-order models arising in physics, biology, engineering, and related disciplines, where 

ensuring the existence and uniqueness of solutions is essential for the reliability of simulations and interpretations. 

Several directions for future research naturally arise from this study. The analysis can be extended to systems of 

nonlinear fractional-order differential equations and to problems involving different types of fractional 

derivatives, such as the Hilfer or Atangana–Baleanu derivatives. Furthermore, stability analysis, dependence on 

parameters, and numerical approximation schemes can be investigated within the same functional analytic 

framework. Such extensions would further strengthen the theoretical understanding and practical applicability of 

nonlinear fractional-order differential equations. 

In conclusion, fixed point theory provides a powerful and flexible approach for analyzing nonlinear fractional-

order differential equations. The results obtained in this paper contribute to the growing body of literature on 

fractional calculus and serve as a useful reference for future theoretical and applied investigations in this rapidly 

evolving field. 
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