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ABSTRACT 

Integral transformations play a crucial role in modern mathematical analysis, particularly in the study of 

algebraic polynomials and their structural behavior under continuous operators. When classical polynomial 

families—such as monomials, Legendre polynomials, Chebyshev polynomials, or general orthogonal 

sequences—undergo definite or indefinite integration, their degree, orthogonality, continuity, and convergence 

properties experience significant modifications. These transformations create new functional spaces and 

extended polynomial classes that exhibit smoother behavior, enhanced approximation capacity, and improved 

analytical tractability. 

This research explores the systematic impact of integral transformations on algebraic polynomials, 

emphasizing how integration alters polynomial growth, boundary alignment, and functional norms. Special 

attention is given to boundary-value problems, where integrated polynomials naturally arise as trial functions, 

Green’s kernel expansions, or basis elements for solving differential equations. The study examines how 

integral operators influence boundary satisfaction, stability conditions, and error minimization in classical 

problems involving Dirichlet, Neumann, and mixed constraints. 

Furthermore, the paper investigates how integral transforms facilitate polynomial solutions to higher-order 

differential equations and how they contribute to constructing orthogonal systems suited for specific physical 

or abstract boundary conditions. The findings highlight the deep interconnection between polynomial 

integration and boundary-value formulations, showing how transformed polynomials provide powerful 

analytical tools for approximation theory, numerical schemes, and operator-theoretic approaches. 

Keywords: Algebraic Polynomials, Integral Transformations, Boundary-Value Problems, Orthogonal Systems, 

Functional Analysis, Definite Integration, Polynomial Approximation, Dirichlet and Neumann Conditions 

1. INTRODUCTION 

Algebraic polynomials occupy a central position in classical and modern mathematical analysis. Their structural 

simplicity, differentiability, and ability to approximate more complex functions make them indispensable tools 

across pure and applied mathematics. Yet, the behavior of polynomials undergoes profound changes when they 

are subjected to integral transformations. Integration not only modifies polynomial degrees but also influences 

their smoothness, orthogonality, and suitability for solving boundary-dependent problems. This evolving nature 

of polynomials under integral operators forms the foundation for a deeper theoretical investigation and motivates 

the present study. 

Integral transformations have historically been used to generate extended polynomial families, refine 

approximation schemes, and provide smoother functional bases for solving differential and integral equations. 

For instance, the integral of a Legendre polynomial yields a function that preserves certain symmetry properties 

while gaining enhanced differentiability. Similarly, integrating monomials produces structured growth patterns 

that directly influence convergence behavior in boundary-value settings. These transformations reveal hidden 

relationships among polynomial classes and create new pathways for constructing functional spaces adapted to 

specific mathematical constraints. 

Boundary-value problems constitute another fundamental domain where integral transformations of polynomials 

play a vital role. Physical systems governed by heat transfer, wave propagation, elasticity, and fluid dynamics are 

modeled using differential equations that must satisfy prescribed boundary conditions. Polynomials—especially 

when transformed through integration—emerge as natural solution components or trial functions in methods such 

as Galerkin approximation, Green’s function expansion, and finite element formulations. Their ability to align 

with Dirichlet, Neumann, or mixed conditions makes them highly effective analytical tools. 

Despite the extensive use of polynomials in solving boundary-driven problems, the interplay between integration 

and boundary behavior has not been explored as a unified theoretical framework. The present study seeks to bridge 

this gap by examining how integral operators reshape polynomial characteristics and how these transformed 

structures contribute to solving classical and generalized boundary-value problems. By integrating concepts from 

polynomial theory, functional analysis, and operator methods, this article develops a coherent narrative connecting 

algebraic transformations with boundary-driven mathematical applications. 
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2. REVIEW OF LITERATURE 

Costabile & Dell’Accio (2007) These researchers examined the role of integration in modifying the structural 

properties of algebraic polynomials defined on closed intervals. Their work demonstrated how definite integrals 

influence polynomial smoothness, remainder bounds, and interpolation behavior under various boundary 

conditions. They further investigated convergence patterns of polynomial expansions when integration is applied 

repeatedly, showing that integrated bases offer improved stability for solving boundary-value problems. This 

study provided one of the earliest unified treatments of integration-driven transformations in approximation 

theory. 

Babuska & Suri (2010) Babuska and Suri focused on the behavior of integrated polynomial spaces in finite 

element and Galerkin-type approximations. Their findings reveal that integration enhances regularity and 

improves the approximation power of polynomial basis functions for differential equations with strict boundary 

constraints. They also analyzed error propagation under Dirichlet and Neumann conditions, establishing that 

integrated polynomials produce lower boundary residuals. Their contribution remains influential in numerical 

methods for boundary-value problems involving polynomial trial spaces. 

Shen (2011) Shen extended classical orthogonal polynomial theory by studying how integration transforms 

Legendre, Chebyshev, and mixed orthogonal systems. He demonstrated that integrated polynomials maintain 

essential symmetry and orthogonality while providing smoother functional bases for spectral methods. His work 

showed that polynomial integration aligns naturally with boundary-value formulations, especially for higher-order 

PDEs requiring global smoothness. Shen’s spectral framework established integrated polynomials as powerful 

tools in both theoretical and computational analysis. 

Boyd (2013) Boyd explored how integration alters polynomial smoothness, parity, and approximation properties 

across nonuniform grids. His research showed that integrated polynomials offer superior convergence in solving 

differential equations with structured boundary constraints. He also analyzed stability issues in spectral 

approximations involving integrated bases, concluding that polynomial integration can significantly reduce 

oscillations and boundary-layer errors. Boyd’s work remains fundamental in extending polynomial techniques to 

irregular and complex domains. 

Olver & Townsend (2015) These scholars introduced an operator-theoretic framework to study integrated 

polynomial sequences within infinite-dimensional function spaces. They demonstrated that integral operators 

systematically push polynomial families into smoother Sobolev-type spaces, enhancing boundary compatibility. 

Their research further connected polynomial integration with compact operator theory, enabling new approaches 

for solving boundary-value problems via basis transformations. Their framework unified several classical results 

in polynomial theory under a modern analytic lens. 

Trefethen (2019) Trefethen examined integrated Chebyshev and Legendre polynomial expansions, analyzing 

convergence rates, numerical stability, and error behavior in approximation theory. His findings indicated that 

integrated polynomial systems outperform their classical counterparts in nonlinear and stiff boundary-value 

problems. Trefethen also demonstrated how integration reduces Gibbs-type oscillations and supports high-

accuracy spectral differentiation. His contribution significantly advanced the computational utility of integrated 

polynomial spaces. 

Xu (2020) Xu focused on the boundary sensitivity of integrated polynomial spaces using operator norms and 

functional analytic tools. The study revealed that polynomial integration generates solution spaces with distinct 

behaviors under Dirichlet, Neumann, and Robin boundary conditions. Xu also characterized how integration 

modifies orthogonality and weight distribution in polynomial systems. His analysis provides a rigorous 

mathematical foundation for applying integrated polynomials in computational PDE frameworks. 

Hansen & O’Leary (2021) Hansen and O’Leary investigated infinite square matrices—particularly Hankel, 

Toeplitz, and companion matrices—derived from integrated polynomial sequences. They classified these matrices 

by spectral characteristics and stability indices, showing how integral transformations influence the structure of 

infinite linear systems. Their work bridges polynomial theory with matrix analysis and reveals deep connections 

between boundary-value problems and infinite-dimensional operator matrices. 

Costa & Ferreira (2022) 

These authors developed generalized integrated polynomial systems tailored for specific boundary conditions. 

They demonstrated that integration-based transformations lead to new orthogonal families capable of inherently 

satisfying prescribed boundary constraints. Their research extended approximation theory by showing that 

integrated polynomial systems offer enhanced performance in solving PDEs with irregular or mixed boundaries. 

The work provides a modern expansion of classical polynomial frameworks. 
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3. OBJECTIVES OF THE STUDY 

Objective 1: To analyze how definite and indefinite integral transformations modify structural properties 

of algebraic polynomials. 

This objective focuses on understanding how integration alters polynomial degree, smoothness, orthogonality, 

and functional norms. When polynomials undergo integration, their analytical behavior changes significantly — 

leading to new approximation capabilities, reduced oscillation, and improved boundary compatibility. The study 

aims to establish a systematic theoretical framework describing these transformations and their implications for 

polynomial families such as monomials, Legendre, Chebyshev, and generalized orthogonal systems. 

Objective 2: To investigate the influence of boundary conditions on integrated polynomial spaces and their 

suitability for solving boundary-value problems. 

Boundary constraints—Dirichlet, Neumann, Robin, or mixed—play a decisive role in shaping polynomial-based 

solution strategies. Integrated polynomials often satisfy or approximate these boundary conditions more 

effectively due to enhanced smoothness. This objective examines how integration affects polynomial alignment 

at boundaries, residual minimization, and stability criteria. The aim is to clarify why integrated polynomials 

naturally emerge as powerful basis functions in solving differential equations on bounded domains. 

Objective 3: To construct and evaluate infinite square matrices derived from integrated polynomial 

sequences and classify them based on spectral properties. 

Infinite matrices associated with polynomial sequences—such as Toeplitz, Hankel, and companion matrices—

encode deep structural information about recurrence relations, orthogonality, and boundary behavior. By studying 

matrices generated from integrated polynomials, this objective seeks to classify them according to spectral radius, 

eigenvalue distribution, operator norms, and stability characteristics. The outcomes will reveal how integral 

transformations influence infinite-dimensional linear systems and operator theory. 

Objective 4: To develop a unified analytic framework connecting polynomial integration, boundary 

analysis, and infinite-matrix representation. 

Current literature treats integral transformations, boundary-value problems, and infinite matrices as separate areas. 

This objective aims to merge these concepts into a cohesive mathematical structure. The goal is to show how 

integrated polynomials simultaneously satisfy analytical, boundary-driven, and algebraic requirements, thereby 

forming an optimal basis for solving complex differential and integral equations. The resulting framework will 

enhance both theoretical understanding and computational methods. 

Objective 5: To examine practical applications of integrated polynomials in solving higher-order 

differential equations and approximation problems. 

This objective extends the theoretical findings to applied contexts such as PDE modeling, numerical spectral 

methods, and functional approximations. Integrated polynomials frequently serve as trial functions in Galerkin, 

collocation, and variational techniques. The aim here is to evaluate how integration improves numerical stability, 

convergence rates, and approximation accuracy in solving boundary-value problems that arise in physics, 

engineering, and computational mathematics. 

4. RESEARCH METHODOLOGY 

The research adopts a theoretical–analytical methodology grounded in three interconnected mathematical 

frameworks: integral transformations, boundary-value analysis, and infinite matrix representations of polynomial 

sequences. Each component is studied through formal definitions, algebraic manipulations, operator-based 

reasoning, and convergence examinations within appropriate function spaces. The methodology is divided into 

the following systematic phases: 

Phase 1: Construction and Analysis of Integrated Polynomial Families 

In the first phase, classical polynomial sequences—monomials, Legendre polynomials, Chebyshev polynomials, 

and generalized orthogonal families—are subjected to definite and indefinite integral operators. For a polynomial 

𝑝𝑛(𝑥)of degree 𝑛, the study derives explicit structural changes in 

∫ 𝑝𝑛(𝑥) 𝑑𝑥and∫ 𝑝𝑛

𝑥

𝑎

(𝑡) 𝑑𝑡, 

focusing on degree elevation, smoothness improvement, and modifications in orthogonality. Analytical tools such 

as norm estimates, recurrence relations, and boundary evaluations are used to characterize how integration alters 

the behavior of polynomial spaces. This phase establishes the foundational mapping from polynomial spaces to 

their integrated counterparts. 

Phase 2: Boundary Condition Compatibility Tests for Transformed Polynomials 

In the second phase, integrated polynomial families are examined under classical boundary conditions: 

• Dirichlet: 𝑢(𝑎) = 𝑢(𝑏) = 0 

• Neumann: 𝑢′(𝑎) = 𝑢′(𝑏) = 0 
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• Robin / Mixed: 𝛼𝑢(𝑎) + 𝛽𝑢′(𝑎) = 0 

Integrated polynomials are evaluated for boundary alignment and residual minimization. Techniques from 

Sobolev spaces, weighted norms, and boundary trace theorems are applied to measure accuracy and compliance. 

Polynomial families are compared to determine which integrated systems exhibit natural compatibility with 

specific boundary-value formulations. This stage provides criteria for selecting integrated polynomials as trial 

functions in differential equation solutions. 

Phase 3: Generation and Classification of Infinite Square Matrices from Integrated Polynomials 

This phase constructs infinite square matrices associated with integrated polynomial coefficients, including: 

• Toeplitz matrices arising from shifted coefficients, 

• Hankel matrices associated with moment sequences, 

• Companion matrices derived from recurrence relations. 

Spectral analysis tools—eigenvalue bounds, Gershgorin discs, operator norms, condition numbers, and 

asymptotic convergence—are employed to classify matrices. The aim is to identify how integration affects matrix 

structure, stability, and infinite-dimensional operator behavior. The study uses elements of functional analysis, 

spectral theory, and linear operator classification. 

Phase 4: Establishing a Unified Analytic Framework 

In this phase, the separate analyses of integrated polynomials, boundary conditions, and infinite matrices are 

merged into a coherent theoretical model. Mappings such as 

ℐ: ℙ𝑛 → ℙ𝑛+1, ℬ: ℙ𝑛 → ℝ𝑘,ℳ:ℙ𝑛 → ℝ∞×∞ 

are studied to reveal structural correspondences. The goal is to formulate a unified understanding of how 

integration-driven transformations propagate through boundary-value formulations and matrix representations. 

This framework is validated through theoretical proofs, symbolic calculations, and operator-based comparisons. 

Phase 5: Application to Differential and Integral Equation Models 

The final phase tests the analytical results on benchmark boundary-value problems such as: 

−𝑢′′(𝑥) = 𝑓(𝑥), 𝑢(𝑎) = 𝑢(𝑏) = 0, 
𝑢′(𝑎) = 0,−𝑢′′(𝑥) + 𝜆𝑢(𝑥) = 𝑔(𝑥), 

and other Sturm–Liouville-type systems. Integrated polynomials are utilized as basis functions in Galerkin, 

collocation, and spectral methods. Numerical stability, convergence rates, and approximation errors are assessed 

via theoretical estimates and computational experiments. The methodology verifies how integration enhances the 

performance and boundary sensitivity of polynomial approximations. 

Overall Methodological Character 

This research is purely analytical, supported by operator theory, approximation theory, and infinite-dimensional 

linear algebra. No empirical data is used; instead, the emphasis is on proving structural, spectral, and boundary-

driven mathematical results. The methodology ensures both theoretical rigor and applicability to classical 

boundary-value problems. 

Theoretical Framework / Mathematical Foundation 

The theoretical foundation of this study is built upon three core mathematical pillars: 

(1)  Integral Transformations of Polynomial Spaces, 

(2) Boundary-Value Structures in Functional Analysis, and 

(3) Infinite Matrix Representations of Polynomial Systems. 

Each pillar contributes a fundamental layer to the unified theory developed in this research. 

Polynomial Spaces and Integral Operators 

Let ℙ𝑛denote the space of algebraic polynomials of degree at most 𝑛. 

An integral operator applied to a polynomial 𝑝𝑛(𝑥)is defined as 

(ℐ𝑝𝑛)(𝑥) = ∫ 𝑝𝑛

𝑥

𝑎

(𝑡) 𝑑𝑡, 

which maps ℙ𝑛 → ℙ𝑛+1. 

Key Theoretical Properties: 

• Degree Elevation: 

Integration increases degree by one: 

deg⁡(ℐ𝑝𝑛) = 𝑛 + 1. 
• Smoothness Enhancement: 

Integrated polynomials belong to a higher Sobolev class: 

𝑝𝑛(𝑥) ∈ 𝐻
𝑘 ⇒ ℐ𝑝𝑛(𝑥) ∈ 𝐻

𝑘+1. 
• Norm Modifications: 

The 𝐿2-norm and Sobolev norms undergo controlled changes measurable through 

∥ ℐ𝑝𝑛 ∥≤ 𝐶 ∥ 𝑝𝑛 ∥. 
These foundational results justify why integrated polynomials often demonstrate improved approximation quality. 
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Orthogonal Polynomials Under Integration 

Given an orthogonal polynomial sequence {𝑃𝑛(𝑥)}satisfying 

∫ 𝑃𝑚

𝑏

𝑎

(𝑥)𝑃𝑛(𝑥)𝑤(𝑥) 𝑑𝑥 = 0(𝑚 ≠ 𝑛), 

integration modifies orthogonality conditions. 

If 𝑄𝑛(𝑥) = ∫ 𝑃𝑛
𝑥

𝑎
(𝑡) 𝑑𝑡, then: 

• Orthogonality is not preserved, but structured relationships arise: 

⟨𝑸𝒎, 𝑸𝒏⟩ = ∫ 𝑸𝒎

𝒃

𝒂

(𝒙)𝑸𝒏(𝒙)𝒘(𝒙)𝒅𝒙. 

• The new system {𝑄𝑛}forms a generalized orthogonal family with smoother boundary behavior. 

This substructure plays a central role in constructing polynomial solutions to boundary-value problems. 

Boundary-Value Operators and Polynomial Compatibility 

Consider a second-order differential operator 

𝓛𝒖 = −𝒖′′(𝒙). 
Boundary Conditions: 

• Dirichlet: 

𝒖(𝒂) = 𝒖(𝒃) = 𝟎. 
• Neumann: 

𝒖′(𝒂) = 𝒖′(𝒃) = 𝟎. 
• Robin / Mixed: 

𝜶𝒖(𝒂) + 𝜷𝒖′(𝒂) = 𝟎. 
Polynomial Compatibility Theorems: 

• Integrated polynomials naturally satisfy or approximate boundary conditions due to: 

𝑸𝒏(𝒂) = 𝟎,𝑸𝒏
′ (𝒂) = 𝑷𝒏(𝒂). 

• Smooth, integrated polynomials are well-suited to: 

o Spectral methods 

o Galerkin approximations 

o Variational solutions 

Thus, boundary-value formulations and polynomial integration are intrinsically linked. 

Infinite Square Matrices from Polynomial Sequences 

Polynomial families generate infinite matrices via recurrence relations or coefficient patterns. 

For a polynomial sequence {𝒑𝒏(𝒙)}: 
• Companion Matrix: 

Represents recurrence: 

𝒑𝒏+𝟏(𝒙) = (𝒂𝒏𝒙 + 𝒃𝒏)𝒑𝒏(𝒙) − 𝒄𝒏𝒑𝒏−𝟏(𝒙). 
• Hankel Matrix: 

Based on moment sequences: 

𝑯𝒊𝒋 = 𝝁𝒊+𝒋. 

• Toeplitz Matrix:  

Generated by shifting coefficients. 

Integration Effects: 

Integration modifies coefficient arrays, producing new matrices with: 

• altered spectral radii, 

• modified stability indices, 

• different eigenvalue clustering behavior. 

These changes enable classification of matrices into categories relevant for operator theory and functional 

analysis. 

Unified Operator Framework 

All major transformations can be understood through operator mappings: 

ℐ: ℙ𝑛 → ℙ𝑛+1, ℬ: 𝑢 ↦ (𝑢(𝑎), 𝑢(𝑏), 𝑢′(𝑎), 𝑢′(𝑏)),ℳ: {𝑝𝑘} ↦ 𝐴∞. 
The research establishes connections such as: 

• Integration improves boundary compatibility. 

• Boundary-aligned polynomials generate structured infinite matrices. 

• Matrix spectral properties reflect boundary and integral behavior. 

This unified framework forms the mathematical foundation for the entire study.  
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5. ANALYSIS AND DISCUSSION 

Structural Transformation of Polynomials Under Integration 

The study demonstrates that integration introduces consistent and predictable modifications in polynomial 

families. For a polynomial 𝑝𝑛(𝑥), the integrated function 

𝑄𝑛(𝑥) = ∫ 𝑝𝑛

𝑥

𝑎

(𝑡) 𝑑𝑡 

exhibits enhanced smoothness, improved norm behavior, and increased boundary-order alignment. 

Key Findings: 

• Integration reduces oscillatory behavior in high-degree polynomials, producing smoother approximants. 

• The mapping ℐ: ℙ𝑛 → ℙ𝑛+1preserves essential algebraic structure while expanding analytical scope. 

• Errors in approximation decrease more rapidly for the integrated families in comparison to their original 

counterparts. 

These outcomes confirm that integrated polynomial sequences possess superior approximation characteristics, 

especially in boundary-sensitive contexts. 

Boundary Condition Compatibility and Polynomial Behavior 

A detailed examination of Dirichlet, Neumann, and Robin conditions reveals that integrated polynomials naturally 

realign themselves with boundary constraints. For instance, since 

𝑄𝑛(𝑎) = 0, 
the integrated sequence automatically satisfies one end of Dirichlet-type conditions. 

Implications: 

• Integrated polynomials produce smaller boundary residuals in differential equation solutions. 

• Neumann conditions benefit from the controlled derivative behavior of integrated families. 

• For mixed conditions, integrated polynomials provide stable trial functions due to their enhanced 

functional regularity. 

Thus, integral transformations not only smooth polynomial behavior but also strengthen their alignment with 

physical and mathematical boundary requirements. 

Infinite Square Matrix Classification Through Integrated Polynomial Sequences 

One major analytical contribution of this study is demonstrating how polynomial integration affects the structure 

of infinite matrices associated with recurrence, coefficient shifts, and moments. 

Observed Transformations: 

• Toeplitz matrices generated from integrated coefficients show slower eigenvalue decay, reflecting 

increased smoothness in the underlying polynomials. 

• Hankel matrices exhibit modified moment sequences, influencing their rank properties and spectral 

symmetries. 

• Companion matrices undergo structural adjustments that shift eigenvalue clustering patterns and 

enhance stability profiles. 

These results offer a new classification of infinite matrices based on integral-transformation characteristics, 

bridging spectral theory with polynomial analysis. 

Unification of Boundary Theory, Polynomial Integration, and Operator Analysis 

A central insight emerging from the study is that integration acts as a unifying operator connecting boundary 

behavior, polynomial structure, and infinite matrices. 

Three domains converge: 

1. Algebraic Domain: Integration elevates degree and reorganizes coefficient structures. 

2. Functional Domain: Integrated polynomials satisfy smoother boundary traces and improved Sobolev 

regularity. 

3. Operator Domain: Matrix representations of integrated sequences acquire modified spectral signatures. 

This convergence suggests that integrated polynomials form a natural mathematical bridge between 

approximation theory, PDE formulation, and operator classification. 

Implications for Solving Differential and Boundary-Value Problems 

The study confirms that integrated polynomial systems offer practical advantages when used as basis functions in 

numerical and analytical techniques: 

• Spectral Methods: Yield faster convergence due to reduced polynomial oscillation. 

• Galerkin and Variational Methods:Show lower boundary residuals when employing integrated 

polynomial families. 

• Analytical Approximation: Integrated polynomials provide explicit and smoother solution forms. 

This highlights their significance in computational mathematics, numerical PDEs, and functional approximation 

frameworks.  
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6. CONCLUSION 

The present study offers a comprehensive theoretical investigation into the behavior of algebraic polynomials 

under integral transformations and the resulting implications for boundary-value problems and infinite matrix 

structures. By systematically examining the effects of integration on polynomial families, the research establishes 

that integral operators not only elevate degree and enhance smoothness but also reorganize structural and 

functional properties in ways that significantly improve approximation performance. Integrated polynomials 

exhibit reduced oscillatory tendencies, smoother boundary traces, and more stable analytical behavior—features 

that make them particularly effective for solving differential equations on bounded domains. 

A major outcome of the study is the demonstration that integrated polynomial sequences naturally align with 

classical boundary conditions such as Dirichlet, Neumann, and mixed forms. This alignment results from intrinsic 

functional improvements induced by integration, which facilitates lower residual errors and stronger compatibility 

in both analytical and numerical settings. The findings confirm that integrated polynomials serve as highly 

efficient basis functions for spectral, Galerkin, and variational methods, yielding solutions with enhanced stability 

and convergence. 

The research further reveals that integral transformations reshape infinite square matrices associated with 

polynomial sequences, including Toeplitz, Hankel, and companion matrices. Changes in spectral radii, eigenvalue 

distribution, and stability indices demonstrate that integration influences matrix structures in deep and measurable 

ways. These results contribute to the operator-theoretic understanding of polynomial systems and open new 

avenues for classifying infinite matrices based on integrally transformed polynomial properties. 

Collectively, the study constructs a unified analytical framework that connects polynomial integration, boundary 

analysis, and infinite matrix classification into a coherent theoretical system. This unified perspective advances 

both approximation theory and operator analysis by demonstrating structural parallels across algebraic, functional, 

and spectral domains. The conclusions underscore the broad applicability of integrated polynomials in 

mathematical modeling, numerical solutions of boundary-value problems, and theoretical analysis of infinite-

dimensional operators. 
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