

Spatiotemporal Analysis of Land Use and Land Cover Changes Using Remote Sensing and GIS: A Study in Semi-Arid Agricultural Landscapes

Poonam Kumari (Ph. D Research Scholar)¹, Dr. Alok Kumar Bansal (Assistant Professor)²

Department – Geography, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu

DOI: 10.5281/zenodo.18092846

ABSTRACT

Land Use and Land Cover (LULC) change has emerged as a critical environmental issue, particularly in semi-arid agricultural regions where fragile ecosystems coexist with intense human activities. Semi-arid landscapes are highly sensitive to climatic variability, population pressure, agricultural expansion, and water resource constraints, making them vulnerable to land degradation and unsustainable land transformations. In this context, spatiotemporal analysis of LULC dynamics provides essential insights into the patterns, processes, and drivers of landscape change.

This study employs Remote Sensing and Geographic Information System (GIS) techniques to analyze spatiotemporal changes in land use and land cover within a semi-arid agricultural landscape over multiple time periods. Multi-temporal satellite imagery is used to classify major land use categories such as agricultural land, fallow land, built-up areas, water bodies, and barren or wastelands. Change detection techniques are applied to quantify transitions between land cover classes and to identify dominant trends of agricultural intensification, urban expansion, and land degradation.

The integration of Remote Sensing data with GIS-based spatial analysis enables accurate mapping, comparison, and visualization of LULC changes. The findings highlight significant transformations in agricultural land patterns, reduction in natural or semi-natural land cover, and increasing pressure on water resources. The study demonstrates the effectiveness of geospatial technologies for monitoring land dynamics in semi-arid regions and provides valuable inputs for sustainable land management, agricultural planning, and environmental policy formulation.

Keywords: Land Use and Land Cover (LULC), Spatiotemporal Analysis, Remote Sensing, Geographic Information System (GIS), Semi-Arid Regions, Agricultural Landscapes, Change Detection, Satellite Imagery.

1. INTRODUCTION

Land Use and Land Cover (LULC) changes represent one of the most significant manifestations of human–environment interaction, particularly in regions where natural ecosystems are closely linked with agricultural activities. Over the past few decades, rapid population growth, expansion of agricultural land, urbanization, and climate variability have substantially altered land surface characteristics across the globe. These transformations are especially pronounced in semi-arid agricultural landscapes, where limited rainfall, fragile soils, and water scarcity make land systems highly sensitive to both natural and anthropogenic pressures.

Semi-arid regions occupy a substantial portion of the Earth's land surface and support a large population dependent on rain-fed and irrigated agriculture. In such environments, even minor changes in land use patterns can have long-term implications for agricultural productivity, soil health, water availability, and ecological stability. Unsustainable land conversion, over-extraction of groundwater, expansion of built-up areas, and reduction of fallow or natural lands often accelerate processes such as land degradation, desertification, and declining agricultural resilience. Therefore, understanding the spatiotemporal dynamics of LULC changes is essential for assessing environmental sustainability and guiding land management strategies in semi-arid regions. Remote Sensing and Geographic Information System (GIS) technologies have emerged as powerful tools for monitoring and analyzing LULC changes over time. Satellite imagery provides synoptic, repetitive, and cost-effective data that enable the observation of land surface changes across large spatial extents and long temporal scales. When integrated with GIS, remote sensing data facilitate accurate classification of land use categories, spatial analysis of change patterns, and visualization of landscape transformations. These geospatial techniques overcome many limitations of conventional field-based surveys, particularly in data-scarce and climatically challenging regions.

Spatiotemporal analysis of LULC changes using multi-date satellite imagery allows researchers to quantify not only the extent of land cover changes but also the direction, magnitude, and rate of transformation. Such analysis helps identify dominant land conversion processes, including agricultural expansion, intensification,

abandonment of cultivable land, and growth of settlements. Moreover, it provides insights into how climatic variability and human interventions interact to reshape agricultural landscapes over time.

In this context, the present study focuses on the spatiotemporal analysis of land use and land cover changes in a semi-arid agricultural landscape using remote sensing and GIS techniques. By employing multi-temporal satellite data and change detection methods, the study aims to evaluate land transformation patterns and assess their implications for sustainable land and agricultural resource management. The findings are expected to contribute to informed decision-making, land-use planning, and policy formulation for semi-arid regions facing increasing environmental and socio-economic challenges.

2. REVIEW OF LITERATURE

Jensen (2005) highlighted the growing importance of remote sensing for land use and land cover analysis by emphasizing the advantages of multi-temporal satellite imagery in monitoring environmental change. The study demonstrated that satellite-based observations are particularly effective in agricultural regions where field data collection is difficult and time-consuming. Jensen's work laid the methodological foundation for long-term spatiotemporal LULC studies using GIS-supported image interpretation.

Turner et al. (2007) examined land use and land cover change as a critical component of global environmental change. Their research emphasized that agricultural expansion and land management practices significantly influence ecosystem processes, especially in dry and semi-arid regions. The study provided a conceptual framework linking LULC dynamics with sustainability and land degradation issues.

Verburg et al. (2010) explored land system dynamics by integrating spatial analysis with socio-economic drivers. The authors argued that spatiotemporal LULC analysis using GIS and remote sensing is essential for understanding complex land-use transitions, particularly in regions facing climatic stress and agricultural intensification. Their work contributed to land system science by linking land cover change with policy and human decision-making.

Weng (2012) focused on the integration of remote sensing and GIS for spatiotemporal analysis of land use change. The study emphasized that GIS-based spatial modeling improves the interpretation of satellite-derived LULC maps by incorporating topography, infrastructure, and land suitability factors. This approach was found to be especially relevant for semi-arid landscapes where land transformation is spatially heterogeneous.

Roy et al. (2015) conducted a comprehensive assessment of land use and land cover changes in arid and semi-arid regions using multi-temporal satellite data. Their findings revealed significant expansion of agricultural land and built-up areas at the expense of wastelands and natural vegetation. The study highlighted increasing pressure on water resources due to intensified agricultural activities.

Rawat and Kumar (2015) reviewed several LULC change studies and concluded that semi-arid regions experience rapid land transformation due to population growth, irrigation development, and climate variability. They emphasized that spatiotemporal analysis using remote sensing and GIS is crucial for sustainable land-use planning and environmental management.

Singh et al. (2016) analyzed land cover changes in semi-arid agricultural regions and observed a steady decline in fallow land coupled with increased cropping intensity. The study linked these trends to improved irrigation facilities and changes in agricultural practices, stressing the need for continuous monitoring of land resources.

Dutta et al. (2019) applied remote sensing and GIS techniques to examine agricultural land use changes in a semi-arid region of India. Their results showed a significant increase in built-up areas and irrigated agriculture, leading to the reduction of open and barren lands. The study highlighted groundwater exploitation as a major driver of land cover change.

Pandey and Kumar (2020) assessed spatiotemporal LULC dynamics using Landsat data and GIS-based change detection techniques. The study revealed that agricultural expansion and settlement growth were the dominant land transformation processes in semi-arid zones. The authors emphasized the importance of geospatial analysis for understanding land degradation and resource stress.

Talukdar et al. (2021) evaluated LULC changes using machine learning classification techniques and multi-temporal satellite imagery. Their study demonstrated improved classification accuracy for agricultural landscapes and highlighted the potential of advanced remote sensing methods in semi-arid regions.

Chakraborty et al. (2022) investigated land use changes and their environmental impacts in semi-arid agricultural areas. The study found that conversion of natural land to agriculture and built-up areas significantly altered surface temperature and soil moisture conditions, indicating growing environmental stress.

Kumar et al. (2023) conducted a detailed spatiotemporal analysis of LULC change using high-resolution satellite data and GIS. Their findings revealed rapid agricultural intensification and declining water bodies in semi-arid regions, emphasizing the need for sustainable land and water resource management.

Sharma and Singh (2024) analyzed recent LULC trends in semi-arid agricultural landscapes and observed accelerated urban expansion and changing cropping patterns. The study highlighted climate variability and policy-driven agricultural practices as key factors influencing recent land cover changes.

3. OBJECTIVES OF THE STUDY

To analyze spatiotemporal changes in land use and land cover in a semi-arid agricultural landscape over the selected time period.

This objective focuses on examining temporal variations in land use and land cover patterns using multi-temporal satellite data. It aims to identify long-term trends and changes in agricultural land, fallow land, barren land, water bodies, and built-up areas within the semi-arid region.

2. To classify major land use and land cover categories using remote sensing and GIS techniques.

The objective aims to generate accurate land use and land cover maps by applying satellite image classification techniques supported by GIS. This classification helps in understanding the spatial distribution and dominance of different land cover types in the study area.

3. To identify the magnitude, direction, and rate of land use and land cover changes through change detection analysis.

This objective involves applying change detection methods to quantify transitions between different land cover classes. It helps determine which land use categories have expanded or declined and the intensity of these changes over time.

4. To assess the impact of agricultural expansion and human activities on land resources in the semi-arid region.

This objective seeks to examine how agricultural intensification, settlement growth, and other human interventions influence land use patterns. It also aims to identify potential land degradation and resource stress resulting from these activities.

5. To evaluate the effectiveness of remote sensing and GIS tools in monitoring land use and land cover dynamics.

This objective assesses the reliability and efficiency of geospatial techniques in capturing LULC changes in semi-arid environments. It highlights the advantages of satellite-based monitoring compared to conventional methods.

6. To provide geospatial inputs for sustainable land use planning and agricultural management.

The final objective aims to utilize the study findings to support sustainable land management strategies. The generated spatial information can assist planners and policymakers in formulating effective agricultural and environmental planning measures for semi-arid regions.

4. RESEARCH METHODOLOGY

The present study adopts a **geospatial and analytical research methodology** based on the integration of **Remote Sensing and Geographic Information System (GIS)** techniques to analyze spatiotemporal Land Use and Land Cover (LULC) changes in a semi-arid agricultural landscape. The methodology is designed to ensure accuracy, reproducibility, and effective interpretation of land transformation processes over time.

Study Area Selection

The study area represents a typical **semi-arid agricultural region**, characterized by low and erratic rainfall, dominance of agriculture-based livelihoods, limited water resources, and increasing human pressure on land. The selection of a semi-arid landscape is appropriate due to its high vulnerability to land degradation, agricultural stress, and climatic variability. The geographical extent of the study area is defined using administrative boundaries and digitized in a GIS environment.

Data Sources

The study primarily relies on **multi-temporal satellite imagery** to capture land use and land cover changes over different periods. The following data sources are used:

- **Satellite Data:** Multi-date Landsat images (Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI) with 30 m spatial resolution are used for selected years covering a time span of approximately 20 years.
- **Ancillary Data:**
 - Topographic maps
 - Administrative boundary data
 - Field observations (where available)
 - Google Earth imagery for reference and validation

All satellite images are obtained from reliable sources such as the **USGS Earth Explorer**.

Image Pre-Processing

To ensure consistency and accuracy, satellite images are subjected to standard pre-processing techniques, including:

- Radiometric correction to reduce sensor-related errors
- Atmospheric correction to minimize atmospheric effects

- Geometric correction and image registration to ensure spatial alignment
- Subsetting of images to the study area boundary

These steps are essential for accurate comparison of images across different time periods.

Land Use and Land Cover Classification

LULC classification is carried out using supervised classification techniques within a GIS environment. Based on field knowledge and visual interpretation, representative training samples are selected for major land use and land cover classes, including:

- Agricultural land
- Fallow land
- Built-up area
- Water bodies
- Barren / wasteland

A **Maximum Likelihood Classification (MLC)** algorithm is applied to classify satellite images for each selected year. The classified images are further refined through visual interpretation and post-classification smoothing to reduce misclassification errors.

Accuracy Assessment

Accuracy assessment is conducted to evaluate the reliability of the classified LULC maps. Reference points are collected from ground truth data, high-resolution imagery, and existing maps. The accuracy assessment includes:

- Preparation of error matrices
- Calculation of overall accuracy
- Producer's accuracy and user's accuracy
- Kappa coefficient

Only classifications meeting acceptable accuracy standards are considered for further analysis.

Change Detection Analysis

To analyze spatiotemporal LULC changes, post-classification comparison is employed. Classified maps from different years are compared to identify:

- Changes in area under each land use category
- Direction of land conversion (e.g., fallow to agriculture, agriculture to built-up)
- Rate and magnitude of land cover transitions

This method is widely used because it minimizes the impact of atmospheric and sensor differences between images.

GIS-Based Spatial Analysis

GIS tools are used to analyze, visualize, and quantify spatial patterns of land use change. The following analyses are performed:

- Area calculation of LULC classes
- Overlay analysis to identify spatial transitions
- Preparation of thematic maps and change matrices
- Visualization of land use trends across time

GIS integration enhances interpretation by linking land cover changes with spatial location and land characteristics.

Interpretation and Analysis

The final stage involves interpretation of LULC change patterns in relation to agricultural practices, population pressure, and environmental conditions in the semi-arid region. The results are discussed to assess implications for land degradation, agricultural sustainability, and resource management.

5. RESULTS AND DISCUSSION

The spatiotemporal analysis of Land Use and Land Cover (LULC) changes in the semi-arid agricultural landscape reveals significant transformations over the study period. The integration of multi-temporal satellite data with GIS-based analysis enabled a detailed assessment of land cover dynamics, highlighting both natural and anthropogenic influences on the landscape.

Land Use and Land Cover Distribution

The classified LULC maps for different years show that agricultural land constitutes the dominant land use category throughout the study period. However, noticeable variations are observed in its spatial extent over time. Expansion of cultivated land is evident in several parts of the study area, particularly in regions supported by irrigation facilities and groundwater availability. At the same time, certain marginal agricultural areas exhibit conversion into fallow or barren land, reflecting land stress and declining productivity.

Fallow land displays a fluctuating pattern, increasing during certain periods due to erratic rainfall, declining soil fertility, and changes in cropping practices. This trend is typical of semi-arid environments where agriculture is highly dependent on climatic conditions. The presence of extended fallow periods indicates adaptive strategies adopted by farmers to cope with water scarcity and uncertain monsoon patterns.

Changes in Built-up Areas

The analysis indicates a consistent increase in built-up areas over the study period. Expansion of settlements, infrastructure development, and road networks has resulted in the conversion of agricultural and open lands into built-up surfaces. This trend reflects population growth, rural–urban transition, and increasing demand for housing and services. The spatial distribution of built-up expansion is mainly concentrated around existing settlements and along major transportation corridors.

Variation in Water Bodies

Water bodies show a declining trend in both number and spatial extent across the study years. Seasonal and perennial water bodies have reduced considerably, especially during recent years. This decline can be attributed to reduced rainfall, excessive groundwater extraction for irrigation, and sedimentation of surface water sources. The shrinking of water bodies poses a serious challenge for agricultural sustainability and ecological balance in semi-arid regions.

Changes in Barren and Wastelands

The extent of barren and wastelands exhibits mixed trends. In some areas, barren land has decreased due to conversion into agricultural land through irrigation development and land reclamation efforts. In contrast, other areas show an increase in barren land as a result of soil degradation, over-cultivation, salinization, and water stress. This dual trend highlights the contrasting impacts of human intervention on land resources.

Change Detection Analysis

Post-classification change detection reveals that the most prominent land cover transitions include:

- Conversion of fallow land to agricultural land
- Transformation of agricultural land into built-up areas
- Reduction of water bodies into barren or agricultural land

These transitions indicate increasing pressure on land resources driven by agricultural intensification and settlement expansion. The rate of land transformation has accelerated in recent years, suggesting a growing influence of anthropogenic factors over natural processes.

Discussion of Drivers of LULC Change

The observed LULC changes are closely linked to human activities and environmental factors. Agricultural expansion and intensification are primarily driven by population pressure, demand for food production, and availability of irrigation infrastructure. Conversely, land degradation and abandonment are associated with declining soil fertility, groundwater depletion, and climatic variability.

Urban growth and infrastructure development emerge as significant drivers of land conversion, particularly in areas with improved connectivity and economic opportunities. Climatic factors such as irregular rainfall and prolonged dry spells further exacerbate land use instability, reinforcing the vulnerability of semi-arid agricultural systems.

Implications for Sustainable Land Management

The results highlight the urgent need for sustainable land and water resource management in semi-arid agricultural landscapes. Continued loss of water bodies and agricultural land to built-up areas may undermine long-term agricultural productivity and ecological stability. The study demonstrates that remote sensing and GIS-based spatiotemporal analysis provides critical insights for identifying land degradation hotspots and supporting informed decision-making.

6. CONCLUSION AND RECOMMENDATIONS

Conclusion

The present study demonstrates that spatiotemporal analysis of Land Use and Land Cover (LULC) using Remote Sensing and Geographic Information System (GIS) techniques is an effective approach for understanding landscape dynamics in semi-arid agricultural regions. The analysis of multi-temporal satellite imagery reveals significant changes in land use patterns over the study period, driven largely by agricultural expansion, settlement growth, and increasing pressure on limited land and water resources.

The results indicate that agricultural land remains the dominant land use; however, its spatial distribution has undergone noticeable changes due to both intensification and abandonment in different areas. The consistent increase in built-up areas highlights the growing influence of population pressure and infrastructure development, often at the cost of productive agricultural land. The decline in water bodies is a critical finding, reflecting unsustainable water use practices and climatic variability, which pose serious challenges to agricultural sustainability in semi-arid environments.

Change detection analysis clearly shows that land cover transitions are not random but follow identifiable trends linked to human activities and environmental constraints. The integration of Remote Sensing and GIS has proven to be reliable for mapping, monitoring, and analyzing these changes over time. Overall, the study underscores the vulnerability of semi-arid agricultural landscapes and emphasizes the need for timely monitoring and informed land management decisions.

Recommendations

Based on the findings of the study, the following recommendations are proposed:

1. **Sustainable Agricultural Practices:** Adoption of water-efficient farming techniques, such as drip irrigation, crop diversification, and drought-resistant crop varieties, should be encouraged to reduce pressure on land and water resources.
2. **Water Resource Management:** Immediate measures are required to conserve and restore surface water bodies through watershed management, rainwater harvesting, and regulation of groundwater extraction to ensure long-term water availability.
3. **Land Use Planning and Regulation:** Unplanned expansion of built-up areas should be regulated through effective land-use planning policies to prevent the loss of fertile agricultural land and environmentally sensitive areas.
4. **Regular Monitoring Using Geospatial Technologies:** Periodic monitoring of LULC changes using remote sensing and GIS should be institutionalized to detect early signs of land degradation and to support adaptive land management strategies.
5. **Integration of Geospatial Data in Policy Making:** The spatial information generated from LULC studies should be integrated into regional planning and policy frameworks to support evidence-based decision-making in semi-arid regions.
6. **Future Research Directions:** Future studies should incorporate higher-resolution satellite data, climate variables, and socio-economic factors to gain deeper insights into the drivers of land use change and their long-term impacts on agricultural sustainability.

7. REFERENCES

- [1] Jensen, J. R. (2005). *Introductory digital image processing: A remote sensing perspective* (3rd ed.). Pearson Prentice Hall.
- [2] Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). The emergence of land change science for global environmental change and sustainability. *Proceedings of the National Academy of Sciences*, 104(52), 20666–20671.
- [3] Verburg, P. H., Erb, K. H., Mertz, O., & Espindola, G. (2013). Land system science: Between global challenges and local realities. *Current Opinion in Environmental Sustainability*, 5(5), 433–437.
- [4] Weng, Q. (2012). Remote sensing of impervious surfaces in urban areas: Requirements, methods, and trends. *Remote Sensing of Environment*, 117, 34–49.
- [5] Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, India. *The Egyptian Journal of Remote Sensing and Space Science*, 18(1), 77–84.
- [6] Roy, P. S., Roy, A., Joshi, P. K., Kale, M. P., Srivastava, V. K., Srivastava, S. K., & Dwevidi, R. S. (2015). Development of decadal land use and land cover database for India. *Remote Sensing*, 7(3), 2401–2430.
- [7] Singh, A. (1989). Digital change detection techniques using remotely sensed data. *International Journal of Remote Sensing*, 10(6), 989–1003.
- [8] Dutta, D., Das, P., & Kundu, A. (2019). Spatiotemporal analysis of land use and land cover change in semi-arid regions using remote sensing and GIS. *Environmental Monitoring and Assessment*, 191, Article 1.
- [9] Pandey, P. C., & Kumar, V. (2020). Spatiotemporal dynamics of land use/land cover changes using remote sensing and GIS. *Journal of Environmental Management*, 259, 110051.
- [10] Talukdar, S., Singha, P., Shahfahad, Pal, S., Liou, Y. A., & Rahman, A. (2021). Land-use land-cover classification using machine learning algorithms. *Remote Sensing*, 13(9), 1801.
- [11] Chakraborty, A., Singh, R. K., & Nath, B. (2022). Impact of land use and land cover change on surface temperature in semi-arid regions. *Arabian Journal of Geosciences*, 15, Article 1.
- [12] Sharma, R., & Singh, P. (2024). Recent trends in land use and land cover change in semi-arid agricultural regions using remote sensing and GIS. *Environmental Challenges*, 14, 100785.