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ABSTRACT  
  

If is a polynomial of degree n having no zero in , , then for , 

integers ,  and , we prove 
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1. INTRODUCTION AND STATEMENT OT THE RESULTS 
 Let  be a polynomial of degree  and  be its derivative, then for ,  

                     ,                                                              (1.1) 

If we let in (1.1) and make use of the well-known fact from analysis [16, 17] that  

                    ,                                                       (1.2)  

we obtain the following inequalities 

                              ,                                                        (1.3)  

Inequality (1.3) is a classical result due to Bernstein [4].  

If we restrict ourselves to the class of polynomials having no zero in , then inequality (1.1) can be 

improved. In fact, the following results are known. 

Theorem A. If is a polynomial of degree n having no zero in , then for each ,  

    ,                                                             (1.4) 

Where  .  

In (1.4), equality occurs for , . 

For , Theorem A was found by de-Bruijn [6] and later independently proved by Rahman [13]. For the 

special case , it was proved by Lax [12]. Rahman and Schmeisser [14] showed that (1.4) remain valid for 

 as well. 

For the class of polynomials having no zero in the disc , , Govil and Rahman [10] proved 

the following inequality (1.5) for . 

Later it was shown by Gardner and Weems [9], and independently by Rather [15] that inequality (1.5) 

also holds for . 

Theorem B. If  is a polynomial of degree n having no zero in , , then for ,  

                ,                                                                      (1.5) 

where  
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 . 

Dewan and Bidkham [7] generalized the famous result due to Malik [11] by proving 

Theorem C. If   is a polynomial of degree n such that it has no zero in   , , then for 

, 

.                                                                               (1.6) 

The result is best possible and extremal polynomial is . 

Barchand and Dewan [5] obtained a generalization as well as an improvement of (1.6) by considering 

the sth derivative of .  

Theorem D. If is a polynomial of degree n having no zero in , , then for , and 

, 

,                                                (1.7) 

  Where . 

The result is best possible for  and equality in (1.7) holds for . 

 In this paper, we obtain an 
q

L version of Theorem D which has some interesting consequences. More 

precisely, we have  

 Theorem. If is a polynomial of degree n having no zero in , , then for 

, integers ,  and , 
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Remark 1.1. Taking limit as in the inequality (1.8), we obtain inequality (1.7) of Theorem D.       

Remark 1.2. If we put in (1.8), we get an integral analogue of a best possible result proved by Aziz 

and Shah [3, Corollary 5] which is further an improvement of Theorem C due to Dewan and Bidkham [7]. 

Corollary 1.1. If is a polynomial of degree n having no zero in , , then for , 

and , 
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Remark 1.3. Further, on putting in our theorem, we have   

Corollary 1.2. If is a polynomial of degree n having no zero in , then for , 

integers ,  and , 

( ) ( ) ( ) ( ) 

1
21 2

1 ....... 1 , ,
2 1

0

nq qs ip e d n n n s M p r mEq
r


 



    
    − − + −    +     

            (1.9)  



International Organization of Research &Development (IORD) 

ISSN: 2348-0831 

Vol. 08 Issue 01 | 2020 

050203 www.iord.in 13 

where 

1
2

0

1
1

2

qq
i

q
e dE



 


−

 
= + 
 

  and .   

For , corollary 1.2 becomes the qL  version of a result due to Aziz and Dawood [1]. 

 

1.1 Lemmas  
 Lemma 2.1. If  is a polynomial of degree n which does not vanish in , then for each  

and integers , , 
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This result was proved by Aziz and Shah [2]. 

Lemma 2.2. Let , , be a polynomial of degree n having no zero in  

, ,  then for , 

,  

where  .                             

The result is sharp and equality holds for the polynomial  where n is a multiple of . 

This lemma is due to Dewan at. al [8]. 

1.2 Proof of the Theorem 

If  has no zero in ,  and if , then  has no zero in , . 

For any complex number such that , the polynomial , where  has no 

zero in . It follows trivially in case . Suppose , then on the circle , 

and therefore for ,  m m  = . Thus by Rouche’s theorem 

has no zero in the open disc . If we apply Lemma 2.1 to , we get 
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Inequality (3.1) is equivalent to 

( ) ( ) ( ) ( )

1 1
2 2

0 0

1 1
1 ....... 1 ,

2 2

q qq r
s s i i

q
R p Re d n n n s p Re m dB

 

   
 

   
 − − + +   

   
   

That is,         

( ) ( ) ( ) ( )

1 1
2 2

0 0

1 1
1 ....... 1 ,

2 2

q qq r
s i i

q
p Re d n n n s p Re m dD

 

   
 

   
 − − + +   

   
  …….(3.2) 



International Organization of Research &Development (IORD) 

ISSN: 2348-0831 

Vol. 08 Issue 01 | 2020 

050203 www.iord.in 14 

Where 

1
2

0

1

2

qq
s s i

q
k R e dD



 


−

 
= + 
 

   

Now, we have for any  with , 
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Suppose at some  on  , attains its maximum.  

Then .                            

In , we choose suitable argument of such that                                         
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Combining (3.3) and (3.4), we get 

.                                                                                                         (3.5) 

Using Lemma 2.2 for  in (3.5), we have 

.                                                                      (3.6) 

If we make use of inequality (3.6) in (3.2), we are lead to 
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Finally by letting in (3.7), we obtain the desired result and the proof of the theorem is completed. 
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